
Fast sorting algorithms

Raimondas �iegis

Matematinio modeliavimo katedra, e-pa²tas: rc@vgtu.lt

November 1, 2023

Raimondas �iegis Paskaita 6

In this lecture we consider three fast sorting algorithms. The
complexity of them is close to the optimal estimate O(N logN).

Raimondas �iegis Paskaita 6

Quicksort algorithm

Quicksort is an e�cient, general-purpose sorting algorithm. It is
still a very popular and commonly used in di�erent applications
algorithm.

We will show that its average complexity is O(N logN), and
Quicksort can be done in-place, requiring only small additional
amounts of memory to perform the sorting.

Raimondas �iegis Paskaita 6

Quicksort is a divide-and-conquer type algorithm.

A partition produces a division into two consecutive non empty
sub-sets, in such a way that no element of the �rst sub-set is
greater than any element of the second sub-set.

After applying this partition, Quicksort then recursively sorts the
sub-sets.

Raimondas �iegis Paskaita 6

Quicksort is a divide-and-conquer type algorithm.

A partition produces a division into two consecutive non empty
sub-sets, in such a way that no element of the �rst sub-set is
greater than any element of the second sub-set.

After applying this partition, Quicksort then recursively sorts the
sub-sets.

Raimondas �iegis Paskaita 6

Partitioning step.

We partition a set A into two sub-sets.

First, a key element aj is selected. It is called a division point or
pivot.

Next we reorder elements of A so that all elements with values less
than the pivot come before the division point,

while all elements with values greater than the pivot come after it.

Elements that are equal to the pivot can go either way.

Raimondas �iegis Paskaita 6

Partitioning step.

We partition a set A into two sub-sets.

First, a key element aj is selected. It is called a division point or
pivot.

Next we reorder elements of A so that all elements with values less
than the pivot come before the division point,

while all elements with values greater than the pivot come after it.

Elements that are equal to the pivot can go either way.

Raimondas �iegis Paskaita 6

Partitioning step.

We partition a set A into two sub-sets.

First, a key element aj is selected. It is called a division point or
pivot.

Next we reorder elements of A so that all elements with values less
than the pivot come before the division point,

while all elements with values greater than the pivot come after it.

Elements that are equal to the pivot can go either way.

Raimondas �iegis Paskaita 6

Partitioning step.

We partition a set A into two sub-sets.

First, a key element aj is selected. It is called a division point or
pivot.

Next we reorder elements of A so that all elements with values less
than the pivot come before the division point,

while all elements with values greater than the pivot come after it.

Elements that are equal to the pivot can go either way.

Raimondas �iegis Paskaita 6

Sorting of sub-sets

If the sub-set has fewer than two elements, return.

Otherwise, apply Quicksort to this sub-set (recursion).

A popular modi�cation selects a small number M.

If the sub-set has fewer than M elements, sort it by some simple
sorting algorithm, e.g. Insert sort.

Raimondas �iegis Paskaita 6

Sorting of sub-sets

If the sub-set has fewer than two elements, return.

Otherwise, apply Quicksort to this sub-set (recursion).

A popular modi�cation selects a small number M.

If the sub-set has fewer than M elements, sort it by some simple
sorting algorithm, e.g. Insert sort.

Raimondas �iegis Paskaita 6

Determination of the solution

Since no element of the �rst sub-set is greater than any element of
the second sub-set, thus by sorting sub-sets we �nish sorting all
elements of A.

No computations are done at this stage.

Raimondas �iegis Paskaita 6

Quicksort algorithm

QuickSort (l, r)
begin

(1) if (l < (r - M)) then

(2) Partition (l, r, m);
(3) QuickSort (l, m-1);
(4) QuickSort (m+1, r);

else

(5) if (l < r) SelectionSort (l, r);
end if

end QuickSort

Raimondas �iegis Paskaita 6

Partition (l, r, m)
begin

(1) v = al ;
(2) i = l; j = r;
(3) while (i < j) do

(4) while ((aj ⩾ v) && (i < j)) j = j − 1;
(5) if (i ̸= j) then
(6) ai = aj ; i++;

end if

(7) while ((ai ⩽ v) && (i < j)) i = i + 1;
(8) if (i ̸= j) then
(9) aj = ai ; j−−;

end if

end do

(10) ai = v ; m = i;
end Partition

Raimondas �iegis Paskaita 6

Let's sort a list

A = (11, 10, 16, 8, 19, 37, 9, 22, 19, 11).

11 10 16 8 19 37 9 22 19 11

9 10 8 11 19 37 16 22 19 11

8 9 10 11 11 16 19 22 19 37

8 9 10 11 11 16 19 19 22 37

The �rst element of any sub-set is used as a pivot.
Pivots are colored red, grey colored elements are swaped during

partition steps.

Raimondas �iegis Paskaita 6

Let's sort a list

A = (11, 10, 16, 8, 19, 37, 9, 22, 19, 11).

11 10 16 8 19 37 9 22 19 11

9 10 8 11 19 37 16 22 19 11

8 9 10 11 11 16 19 22 19 37

8 9 10 11 11 16 19 19 22 37

The �rst element of any sub-set is used as a pivot.
Pivots are colored red, grey colored elements are swaped during

partition steps.

Raimondas �iegis Paskaita 6

Complexity of Quicksort algorithm

We are interested to �nd a number of comparisons LN required to
sort a given set of N elements.

During a partition step each element is compared with a pivot.

Thus a total number of comparisons depends only on sizes of
produced sub-sets.

Raimondas �iegis Paskaita 6

Complexity of Quicksort algorithm

We are interested to �nd a number of comparisons LN required to
sort a given set of N elements.

During a partition step each element is compared with a pivot.

Thus a total number of comparisons depends only on sizes of
produced sub-sets.

Raimondas �iegis Paskaita 6

Let's consider the worst case, when the smallest element is selected
as a pivot.

Then we get the following equation

LB(N) = LB(N − 1) + N − 1 .

If a set contains only one element then it is already sorted:

L(1) = 0 .

By applying this relation (N − 1) times, we get

LB(N) =
N∑
i=2

(i − 1) =
N−1∑
j=1

j =
N2 − N

2
.

Thus in the worst case this algorithm is not faster than Insert sort
or Select sort algorithms.

Raimondas �iegis Paskaita 6

Let's consider the worst case, when the smallest element is selected
as a pivot.

Then we get the following equation

LB(N) = LB(N − 1) + N − 1 .

If a set contains only one element then it is already sorted:

L(1) = 0 .

By applying this relation (N − 1) times, we get

LB(N) =
N∑
i=2

(i − 1) =
N−1∑
j=1

j =
N2 − N

2
.

Thus in the worst case this algorithm is not faster than Insert sort
or Select sort algorithms.

Raimondas �iegis Paskaita 6

Let's consider the worst case, when the smallest element is selected
as a pivot.

Then we get the following equation

LB(N) = LB(N − 1) + N − 1 .

If a set contains only one element then it is already sorted:

L(1) = 0 .

By applying this relation (N − 1) times, we get

LB(N) =
N∑
i=2

(i − 1) =
N−1∑
j=1

j =
N2 − N

2
.

Thus in the worst case this algorithm is not faster than Insert sort
or Select sort algorithms.

Raimondas �iegis Paskaita 6

The most un-expected conclusion is that such a result follows for
already sorted sets (when the �rst element is selected as a pivot).

Raimondas �iegis Paskaita 6

Let's consider the best case, when at each partition step we select
the pivot element which divides a set into two sub-sets of equal
sizes.

Take N = (2m − 1). Then the number of comparisons satisfy the
relation:

LG (2
m − 1) =

2LG (2m−1 − 1) + 2m − 2, when m > 1,

0, when m = 1 .

Raimondas �iegis Paskaita 6

Let's consider the best case, when at each partition step we select
the pivot element which divides a set into two sub-sets of equal
sizes.

Take N = (2m − 1). Then the number of comparisons satisfy the
relation:

LG (2
m − 1) =

2LG (2m−1 − 1) + 2m − 2, when m > 1,

0, when m = 1 .

Raimondas �iegis Paskaita 6

Applying it (m − 2) times we get

LG (N) = 2m − 2+ 2 · (2m−1 − 2) + 22 · (2m−2 − 2) + . . .

+ 2m−2 · (22 − 2)

= (m − 1)2m + 2m − 2

= (N + 1) log(N + 1)− 2.

We note that for the Insert sort algorithm the complexity of the
best case is even better N.

But only for the best case.

Raimondas �iegis Paskaita 6

Applying it (m − 2) times we get

LG (N) = 2m − 2+ 2 · (2m−1 − 2) + 22 · (2m−2 − 2) + . . .

+ 2m−2 · (22 − 2)

= (m − 1)2m + 2m − 2

= (N + 1) log(N + 1)− 2.

We note that for the Insert sort algorithm the complexity of the
best case is even better N.

But only for the best case.

Raimondas �iegis Paskaita 6

Applying it (m − 2) times we get

LG (N) = 2m − 2+ 2 · (2m−1 − 2) + 22 · (2m−2 − 2) + . . .

+ 2m−2 · (22 − 2)

= (m − 1)2m + 2m − 2

= (N + 1) log(N + 1)− 2.

We note that for the Insert sort algorithm the complexity of the
best case is even better N.

But only for the best case.

Raimondas �iegis Paskaita 6

Quicksort algorithm is so popular since in the average case its
complexity is also very close to the best case

LV (N) = 1, 386N logN +O(N) .

Sorting is done in-place.

Raimondas �iegis Paskaita 6

Quicksort algorithm is so popular since in the average case its
complexity is also very close to the best case

LV (N) = 1, 386N logN +O(N) .

Sorting is done in-place.

Raimondas �iegis Paskaita 6

It was explained above that a complexity of Quicksort algorithm is
only O(N2), when

a set of elements is almost sorted,

and the �rst element of a sub-set is selected as a pivot.

Thus the following two mod�cations of the base algorithm are
recommended:

1. At each recursion stage three elements of A are selected in
random ak , al and am and they are sorted.

Then a mid element is taken as a pivot.

2. Before starting the Quicksort algorithm we swap all elements of
A in random.

There is a big probability that sorting costs of such perturbed set
will be close to the average complexity of Quicksort.

Raimondas �iegis Paskaita 6

It was explained above that a complexity of Quicksort algorithm is
only O(N2), when

a set of elements is almost sorted,

and the �rst element of a sub-set is selected as a pivot.

Thus the following two mod�cations of the base algorithm are
recommended:

1. At each recursion stage three elements of A are selected in
random ak , al and am and they are sorted.

Then a mid element is taken as a pivot.

2. Before starting the Quicksort algorithm we swap all elements of
A in random.

There is a big probability that sorting costs of such perturbed set
will be close to the average complexity of Quicksort.

Raimondas �iegis Paskaita 6

It was explained above that a complexity of Quicksort algorithm is
only O(N2), when

a set of elements is almost sorted,

and the �rst element of a sub-set is selected as a pivot.

Thus the following two mod�cations of the base algorithm are
recommended:

1. At each recursion stage three elements of A are selected in
random ak , al and am and they are sorted.

Then a mid element is taken as a pivot.

2. Before starting the Quicksort algorithm we swap all elements of
A in random.

There is a big probability that sorting costs of such perturbed set
will be close to the average complexity of Quicksort.

Raimondas �iegis Paskaita 6

It was explained above that a complexity of Quicksort algorithm is
only O(N2), when

a set of elements is almost sorted,

and the �rst element of a sub-set is selected as a pivot.

Thus the following two mod�cations of the base algorithm are
recommended:

1. At each recursion stage three elements of A are selected in
random ak , al and am and they are sorted.

Then a mid element is taken as a pivot.

2. Before starting the Quicksort algorithm we swap all elements of
A in random.

There is a big probability that sorting costs of such perturbed set
will be close to the average complexity of Quicksort.

Raimondas �iegis Paskaita 6

Median of an unsorted array

Median of a sorted array of size N is de�ned as the middle element.

The following tasks are solved in many applications:

▶ Given an unsorted array of elements A of length N, the task is
to �nd the median of this array;

▶ Find k-th element according to a sorted order.

In fact the task to �nd the median is a particular case of a more
general second task

k = N/2.

Raimondas �iegis Paskaita 6

Median of an unsorted array

Median of a sorted array of size N is de�ned as the middle element.

The following tasks are solved in many applications:
▶ Given an unsorted array of elements A of length N, the task is

to �nd the median of this array;

▶ Find k-th element according to a sorted order.

In fact the task to �nd the median is a particular case of a more
general second task

k = N/2.

Raimondas �iegis Paskaita 6

Median of an unsorted array

Median of a sorted array of size N is de�ned as the middle element.

The following tasks are solved in many applications:
▶ Given an unsorted array of elements A of length N, the task is

to �nd the median of this array;
▶ Find k-th element according to a sorted order.

In fact the task to �nd the median is a particular case of a more
general second task

k = N/2.

Raimondas �iegis Paskaita 6

Median of an unsorted array

Median of a sorted array of size N is de�ned as the middle element.

The following tasks are solved in many applications:
▶ Given an unsorted array of elements A of length N, the task is

to �nd the median of this array;
▶ Find k-th element according to a sorted order.

In fact the task to �nd the median is a particular case of a more
general second task

k = N/2.

Raimondas �iegis Paskaita 6

Median of an unsorted array

Median of a sorted array of size N is de�ned as the middle element.

The following tasks are solved in many applications:
▶ Given an unsorted array of elements A of length N, the task is

to �nd the median of this array;
▶ Find k-th element according to a sorted order.

In fact the task to �nd the median is a particular case of a more
general second task

k = N/2.

Raimondas �iegis Paskaita 6

Both tasks can be solved easily when we have a sorted list of
elements.

Fast sorting algorithms exist. Thus both new tasks can be solved in
O(N logN) operations.

The main challenge is to solve these tasks faster.

Now we will construct a fast algorithm by using the same
divide-and-conquer method.

It is su�cient to modify a partition part of Quicksort algorithm.

Raimondas �iegis Paskaita 6

Both tasks can be solved easily when we have a sorted list of
elements.

Fast sorting algorithms exist. Thus both new tasks can be solved in
O(N logN) operations.

The main challenge is to solve these tasks faster.

Now we will construct a fast algorithm by using the same
divide-and-conquer method.

It is su�cient to modify a partition part of Quicksort algorithm.

Raimondas �iegis Paskaita 6

Both tasks can be solved easily when we have a sorted list of
elements.

Fast sorting algorithms exist. Thus both new tasks can be solved in
O(N logN) operations.

The main challenge is to solve these tasks faster.

Now we will construct a fast algorithm by using the same
divide-and-conquer method.

It is su�cient to modify a partition part of Quicksort algorithm.

Raimondas �iegis Paskaita 6

Both tasks can be solved easily when we have a sorted list of
elements.

Fast sorting algorithms exist. Thus both new tasks can be solved in
O(N logN) operations.

The main challenge is to solve these tasks faster.

Now we will construct a fast algorithm by using the same
divide-and-conquer method.

It is su�cient to modify a partition part of Quicksort algorithm.

Raimondas �iegis Paskaita 6

Quick search algorithm

int QuickFind (l, r, k) # l ≤ k ≤ r
begin

(1) if (l == r) then

(2) return (l);
else

(3) Partition (l, r, m);
(4) if (m > k) then

(5) QuickFind (l, m-1, k);
else

(6) if (m == k) then

(7) return (m);
else

(8) QuickFind (m + 1, r, k);
end if

end QuickFind

Raimondas �iegis Paskaita 6

This implementation of the algorithm is based on recursion.

Still at each stage only one recursion function is activated.

It is recommended to present also an iterative version of this
algorithm.

Raimondas �iegis Paskaita 6

This implementation of the algorithm is based on recursion.

Still at each stage only one recursion function is activated.

It is recommended to present also an iterative version of this
algorithm.

Raimondas �iegis Paskaita 6

We restrict to the complexity analysis of the best case.

After each step of the partition algorithm the size of sub-sets is
reduced twice, thus we get the following equation

LG (N) = N +
N

2
+

N

4
+ . . .+ 2+ 1 = 2N +O(1) .

Thus the median is computed 1
2 logN times faster than by using

the Quicksort algorithm.

Raimondas �iegis Paskaita 6

We restrict to the complexity analysis of the best case.

After each step of the partition algorithm the size of sub-sets is
reduced twice, thus we get the following equation

LG (N) = N +
N

2
+

N

4
+ . . .+ 2+ 1 = 2N +O(1) .

Thus the median is computed 1
2 logN times faster than by using

the Quicksort algorithm.

Raimondas �iegis Paskaita 6

Merge sort

Now we consider one more fast sorting algorithm. Even for the
worst case it has a complexity O(N logN).

This algorithm is based on a well known fact that it is possible to
merge two already sorted sets very e�ciently.

Therefore this algorithm is called Merge sort.

It is interesting to note that divide-and-conquer method is again
used to construct Merge sort.

Raimondas �iegis Paskaita 6

Merge sort

Now we consider one more fast sorting algorithm. Even for the
worst case it has a complexity O(N logN).

This algorithm is based on a well known fact that it is possible to
merge two already sorted sets very e�ciently.

Therefore this algorithm is called Merge sort.

It is interesting to note that divide-and-conquer method is again
used to construct Merge sort.

Raimondas �iegis Paskaita 6

Merge sort

Now we consider one more fast sorting algorithm. Even for the
worst case it has a complexity O(N logN).

This algorithm is based on a well known fact that it is possible to
merge two already sorted sets very e�ciently.

Therefore this algorithm is called Merge sort.

It is interesting to note that divide-and-conquer method is again
used to construct Merge sort.

Raimondas �iegis Paskaita 6

Let's consider how three main steps of the divide-and-conquer
method are implemented for this algorithm.

Partitioning step.

The full set of elements A are divided into two sub-sets.

The �rst N/2 elements are saved in the left sub-set, the remaining
elements belong to the right sub-set.

No computations are done at this step!

Raimondas �iegis Paskaita 6

Let's consider how three main steps of the divide-and-conquer
method are implemented for this algorithm.

Partitioning step.

The full set of elements A are divided into two sub-sets.

The �rst N/2 elements are saved in the left sub-set, the remaining
elements belong to the right sub-set.

No computations are done at this step!

Raimondas �iegis Paskaita 6

Let's consider how three main steps of the divide-and-conquer
method are implemented for this algorithm.

Partitioning step.

The full set of elements A are divided into two sub-sets.

The �rst N/2 elements are saved in the left sub-set, the remaining
elements belong to the right sub-set.

No computations are done at this step!

Raimondas �iegis Paskaita 6

Sorting of sub-sets

If no more than one element belong to this sub-set, then this task
is solved.

Otherwise a sub-set is sorted by using Merge sort algorithm.

Thus once again the recursion method is used.

Raimondas �iegis Paskaita 6

Sorting of sub-sets

If no more than one element belong to this sub-set, then this task
is solved.

Otherwise a sub-set is sorted by using Merge sort algorithm.

Thus once again the recursion method is used.

Raimondas �iegis Paskaita 6

Merge of two sorted sets

Merge sort's most common implementation does not sort in place;
therefore, the memory size of the input must be allocated for the
sorted output to be stored in.

Both input sets are already sorted.

We compare the �rst alements of both sets and a smaller element
is stored in a sorted list.

Next this algorithm is repeated for all elements of sub-sets.

These comparisons are continued till one set becomes empty. The
remaining elements are moved to the sorted list in-order (since both
sub-sets were already sorted).

It is important to note that the Merge sort is a stable sort
algorithm.

Raimondas �iegis Paskaita 6

Merge of two sorted sets

Merge sort's most common implementation does not sort in place;
therefore, the memory size of the input must be allocated for the
sorted output to be stored in.

Both input sets are already sorted.

We compare the �rst alements of both sets and a smaller element
is stored in a sorted list.

Next this algorithm is repeated for all elements of sub-sets.

These comparisons are continued till one set becomes empty. The
remaining elements are moved to the sorted list in-order (since both
sub-sets were already sorted).

It is important to note that the Merge sort is a stable sort
algorithm.

Raimondas �iegis Paskaita 6

Merge of two sorted sets

Merge sort's most common implementation does not sort in place;
therefore, the memory size of the input must be allocated for the
sorted output to be stored in.

Both input sets are already sorted.

We compare the �rst alements of both sets and a smaller element
is stored in a sorted list.

Next this algorithm is repeated for all elements of sub-sets.

These comparisons are continued till one set becomes empty. The
remaining elements are moved to the sorted list in-order (since both
sub-sets were already sorted).

It is important to note that the Merge sort is a stable sort
algorithm.

Raimondas �iegis Paskaita 6

Merge of two sorted sets

Merge sort's most common implementation does not sort in place;
therefore, the memory size of the input must be allocated for the
sorted output to be stored in.

Both input sets are already sorted.

We compare the �rst alements of both sets and a smaller element
is stored in a sorted list.

Next this algorithm is repeated for all elements of sub-sets.

These comparisons are continued till one set becomes empty. The
remaining elements are moved to the sorted list in-order (since both
sub-sets were already sorted).

It is important to note that the Merge sort is a stable sort
algorithm.

Raimondas �iegis Paskaita 6

Merge of two sorted sets

Merge sort's most common implementation does not sort in place;
therefore, the memory size of the input must be allocated for the
sorted output to be stored in.

Both input sets are already sorted.

We compare the �rst alements of both sets and a smaller element
is stored in a sorted list.

Next this algorithm is repeated for all elements of sub-sets.

These comparisons are continued till one set becomes empty. The
remaining elements are moved to the sorted list in-order (since both
sub-sets were already sorted).

It is important to note that the Merge sort is a stable sort
algorithm.

Raimondas �iegis Paskaita 6

Merge of two sorted sets

Merge sort's most common implementation does not sort in place;
therefore, the memory size of the input must be allocated for the
sorted output to be stored in.

Both input sets are already sorted.

We compare the �rst alements of both sets and a smaller element
is stored in a sorted list.

Next this algorithm is repeated for all elements of sub-sets.

These comparisons are continued till one set becomes empty. The
remaining elements are moved to the sorted list in-order (since both
sub-sets were already sorted).

It is important to note that the Merge sort is a stable sort
algorithm.

Raimondas �iegis Paskaita 6

Let's apply the Merge sort for the following set of elements

A = (11, 10, 16, 8, 19, 37, 9, 22, 19, 11).

11 10 16 8 19 37 9 22 19 11

11 10 16 8 19 37 9 22 19 11

11 10 16 8 19 37 9 22 19 11

10 11 16 8 19 9 22 37 11 19

8 10 11 16 19 9 11 19 22 37

8 9 10 11 11 16 19 19 22 37

Selection sort is used to sort grey color elements.

Raimondas �iegis Paskaita 6

Let's apply the Merge sort for the following set of elements

A = (11, 10, 16, 8, 19, 37, 9, 22, 19, 11).

11 10 16 8 19 37 9 22 19 11

11 10 16 8 19 37 9 22 19 11

11 10 16 8 19 37 9 22 19 11

10 11 16 8 19 9 22 37 11 19

8 10 11 16 19 9 11 19 22 37

8 9 10 11 11 16 19 19 22 37

Selection sort is used to sort grey color elements.

Raimondas �iegis Paskaita 6

Complexity analysis of Merge sort

Since all comparisons are done at merge stage, thus it is su�cient
to analyse only this part of the algorithm.

Let us assume that merging two sorted sub-sets of length N1 and
N2 we compare c(N1 + N2) elements, where c ≤ 1.

For simplicity of analysis we take N = 2m. Then we get the
following equation

L(N) =

2 L
(
1
2N

)
+ cN, if N > 2,

1, if N = 2 .

Raimondas �iegis Paskaita 6

Complexity analysis of Merge sort

Since all comparisons are done at merge stage, thus it is su�cient
to analyse only this part of the algorithm.

Let us assume that merging two sorted sub-sets of length N1 and
N2 we compare c(N1 + N2) elements, where c ≤ 1.

For simplicity of analysis we take N = 2m. Then we get the
following equation

L(N) =

2 L
(
1
2N

)
+ cN, if N > 2,

1, if N = 2 .

Raimondas �iegis Paskaita 6

Complexity analysis of Merge sort

Since all comparisons are done at merge stage, thus it is su�cient
to analyse only this part of the algorithm.

Let us assume that merging two sorted sub-sets of length N1 and
N2 we compare c(N1 + N2) elements, where c ≤ 1.

For simplicity of analysis we take N = 2m. Then we get the
following equation

L(N) =

2 L
(
1
2N

)
+ cN, if N > 2,

1, if N = 2 .

Raimondas �iegis Paskaita 6

By applying this equation (m− 1) time, we get the total number of
comparisons

L(N) = 2L
(1
2
N
)
+ cN

= 4L
(1
4
N
)
+ 2cN

= · · · = N

2
L(2) + (m − 1)cN

= cN logN + (0.5− c)N .

Raimondas �iegis Paskaita 6

Merge sort's best case takes about half as many comparisons as its
worst case.

For large N and a randomly ordered input list, Merge sort's
expected (average) number of comparisons of one step approaches
αN fewer than the worst case, where α = 0.2645.

In the worst case, Merge sort uses approximately 39 percents fewer
comparisons than Quicksort does in its average case.

Raimondas �iegis Paskaita 6

Merge sort's best case takes about half as many comparisons as its
worst case.

For large N and a randomly ordered input list, Merge sort's
expected (average) number of comparisons of one step approaches
αN fewer than the worst case, where α = 0.2645.

In the worst case, Merge sort uses approximately 39 percents fewer
comparisons than Quicksort does in its average case.

Raimondas �iegis Paskaita 6

Merge sort's best case takes about half as many comparisons as its
worst case.

For large N and a randomly ordered input list, Merge sort's
expected (average) number of comparisons of one step approaches
αN fewer than the worst case, where α = 0.2645.

In the worst case, Merge sort uses approximately 39 percents fewer
comparisons than Quicksort does in its average case.

Raimondas �iegis Paskaita 6

Conclusions

QuickSort is choosen as a basic sorting algorithm for many Big
Data applications when a very large amount of data should be
sorted and analysed.

We note that this selection is done by so many users despite the
known theoretical result that in the worst case QuickSort is far
from optimal.

Next we formulate the main reasons why it is recommended to
select QuickSort algorithm.

1. QuickSort implementations are faster than Merge sort.

2. QuickSort works in-place.

Raimondas �iegis Paskaita 6

Conclusions

QuickSort is choosen as a basic sorting algorithm for many Big
Data applications when a very large amount of data should be
sorted and analysed.

We note that this selection is done by so many users despite the
known theoretical result that in the worst case QuickSort is far
from optimal.

Next we formulate the main reasons why it is recommended to
select QuickSort algorithm.

1. QuickSort implementations are faster than Merge sort.

2. QuickSort works in-place.

Raimondas �iegis Paskaita 6

Conclusions

QuickSort is choosen as a basic sorting algorithm for many Big
Data applications when a very large amount of data should be
sorted and analysed.

We note that this selection is done by so many users despite the
known theoretical result that in the worst case QuickSort is far
from optimal.

Next we formulate the main reasons why it is recommended to
select QuickSort algorithm.

1. QuickSort implementations are faster than Merge sort.

2. QuickSort works in-place.

Raimondas �iegis Paskaita 6

Conclusions

QuickSort is choosen as a basic sorting algorithm for many Big
Data applications when a very large amount of data should be
sorted and analysed.

We note that this selection is done by so many users despite the
known theoretical result that in the worst case QuickSort is far
from optimal.

Next we formulate the main reasons why it is recommended to
select QuickSort algorithm.

1. QuickSort implementations are faster than Merge sort.

2. QuickSort works in-place.

Raimondas �iegis Paskaita 6

Conclusions

QuickSort is choosen as a basic sorting algorithm for many Big
Data applications when a very large amount of data should be
sorted and analysed.

We note that this selection is done by so many users despite the
known theoretical result that in the worst case QuickSort is far
from optimal.

Next we formulate the main reasons why it is recommended to
select QuickSort algorithm.

1. QuickSort implementations are faster than Merge sort.

2. QuickSort works in-place.

Raimondas �iegis Paskaita 6

Heap sort algorithm

Let's recall main properties of heap data data structure.

Two important conditions are sati�ed for such binary trees:

1. The value of each vertex is larger or equal to values of its
children.

2. The binary tree is balanced, each new level is �lled one by one
and from left to right.

3. The largest element is stored in the root.

4. The complexity of heap construction algorithm is Θ(N).

Raimondas �iegis Paskaita 6

Heap sort algorithm

Let's recall main properties of heap data data structure.

Two important conditions are sati�ed for such binary trees:

1. The value of each vertex is larger or equal to values of its
children.

2. The binary tree is balanced, each new level is �lled one by one
and from left to right.

3. The largest element is stored in the root.

4. The complexity of heap construction algorithm is Θ(N).

Raimondas �iegis Paskaita 6

Heap sort algorithm

Let's recall main properties of heap data data structure.

Two important conditions are sati�ed for such binary trees:

1. The value of each vertex is larger or equal to values of its
children.

2. The binary tree is balanced, each new level is �lled one by one
and from left to right.

3. The largest element is stored in the root.

4. The complexity of heap construction algorithm is Θ(N).

Raimondas �iegis Paskaita 6

Heap sort algorithm

Let's recall main properties of heap data data structure.

Two important conditions are sati�ed for such binary trees:

1. The value of each vertex is larger or equal to values of its
children.

2. The binary tree is balanced, each new level is �lled one by one
and from left to right.

3. The largest element is stored in the root.

4. The complexity of heap construction algorithm is Θ(N).

Raimondas �iegis Paskaita 6

Heap sort algorithm is based on the recursion method.
Thus it is su�cient to consider one step.

1. Elements a1 and aN are swapped.

Now the largest element is placed into the correct position

2. The size of the heap P is reduced

size(P) = size(P)− 1.

3. The properties of the heap structure are restored if they where
violated by the swap operation.

In order to make these modi�cations we use
HeapDownOrder (1, size(P)).

Raimondas �iegis Paskaita 6

Heap sort algorithm is based on the recursion method.
Thus it is su�cient to consider one step.

1. Elements a1 and aN are swapped.

Now the largest element is placed into the correct position

2. The size of the heap P is reduced

size(P) = size(P)− 1.

3. The properties of the heap structure are restored if they where
violated by the swap operation.

In order to make these modi�cations we use
HeapDownOrder (1, size(P)).

Raimondas �iegis Paskaita 6

Heap sort algorithm is based on the recursion method.
Thus it is su�cient to consider one step.

1. Elements a1 and aN are swapped.

Now the largest element is placed into the correct position

2. The size of the heap P is reduced

size(P) = size(P)− 1.

3. The properties of the heap structure are restored if they where
violated by the swap operation.

In order to make these modi�cations we use
HeapDownOrder (1, size(P)).

Raimondas �iegis Paskaita 6

Heap sort algorithm is based on the recursion method.
Thus it is su�cient to consider one step.

1. Elements a1 and aN are swapped.

Now the largest element is placed into the correct position

2. The size of the heap P is reduced

size(P) = size(P)− 1.

3. The properties of the heap structure are restored if they where
violated by the swap operation.

In order to make these modi�cations we use
HeapDownOrder (1, size(P)).

Raimondas �iegis Paskaita 6

Heap sort algorithm

HeapSort ()
begin

(1) MakeHeap ();
(2) for (i=N; i > 1; i = i-1) do
(3) swap (a1, ai);
(4) HeapDownOrder (1, i-1);

end do

end HeapSort

Raimondas �iegis Paskaita 6

10 37 18 13 22 14 25 8 12 28 37 28 25 13 22 14 18 8 12 10

a) b)

10 28 25 13 22 14 18 8 12 37 28 22 25 13 10 14 18 8 12 37

c) d)

12 22 25 13 10 14 18 8 28 37 25 22 18 13 10 14 12 8 28 37

e) f)

8 22 18 13 10 14 12 25 28 37 22 13 18 8 10 14 12 25 28 37

g) h)

12 13 18 8 10 14 22 25 28 37 18 13 14 8 10 12 22 25 28 37

i) j)

Raimondas �iegis Paskaita 6

